
OpenAMP Webinar
2022-12-13

1

Welcome & Agenda

2

Introduction

Upstream Remoteproc & RPMsg

Presentation Bill Mills, Linaro

ST Demo Arnaud Pouliquen, STMicroelectronics

AMD Xilinx Demo Tanmay Shah, AMD Xilinx

Hypervisorless Virtio

Presentation & Demo Dan Milea, Wind River

System Devicetree

Presentation Tomas Evensen, AMD Xilinx

Demo Bruce Ashfield, AMD Xilinx

Wrap up, Q&A All above and more

OpenAMP: “Open Asymmetric Multi-Processing” Project

3

Runtime coexistence and collaboration
Runtime hardware resource assignment

Resource sharing and IPC between runtimes
Control mechanisms to start and stop runtimes

Typical system: Linux + RTOS on one
system-on-chip

www.openampproject.org.

http://www.openampproject.org

OpenAMP Mission

OpenAMP provides standards, runtime
libraries and tooling built on top of existing

open source projects to simplify runtime
collaboration

4

Memory
Shared

Memory
RTOS

Memory
Shared

Memory
Bare Metal

CoreA 0 CoreA 1 CoreB 0 CoreB 1

Linux + Apps RTOS App Bare Metal App

Memory
Linux

Peripheral A

Linux
Domain

RTOS
Domain

BM
Domain

Peripheral B Peripheral C Peripheral D Peripheral E

In OpenAMP, we work on …

● Technologies, independent of implementation
○ Remoteproc & RPMsg
○ Virtio devices
○ System Devicetree
○ anything else that fits the mission

● Implementations
○ Linux Kernel
○ OpenAMP libraries: open-amp and libmetal

■ works on MCUs, SOCs,
■ Multiple RTOS & bare-metal
■ Linux userspace

○ meta-openamp for Yocto/OE
○ Lopper for System Devicetree

5

OpenAMP: A short history

● 2012-2015: OpenAMP starts
○ Remoteproc & RPMsg entered the Linux kernel in v3.4 (2012)
○ The open-amp and libmetal libraries have existed since 2013/2014

respectively
○ OpenAMP project first founded in 2015

● 2018: OpenAMP libraries are included in Zephyr
○ Skinny down the libraries

● 2019/2020: OpenAMP relaunched as a Linaro community project
○ More formal organization and governance
○ New kernel maintainer came on board from Linaro

● 2022: Linaro HPP
○ Heterogeneous Processing Project
○ Linaro & members add engineering resources

to OpenAMP
○ ST and AMD Xilinx are current sponsors of HPP6

https://linaro.atlassian.net/wiki/spaces/HPP/overview

Upstream Remoteproc and RPMsg

7

What are Remoteproc & RPMsg?

● Remoteproc:
○ Load, start, stop firmware
○ Crash detect, dump, & recover
○ Optionally parses firmware resident table to coordinate resource usage
○ Can alternatively just attach to a remoteproc that is already running and provide RPMsg
○ Optional /dev/remoteprocNN device node for control beyond sysfs

● RPMsg:
○ IPC messages with multiple channels, name based port resolution and late binding
○ Multiple in kernel providers:

■ OpenAMP focuses on virtio based RPMsg
■ Qualcomm uses glink RPMsg to dedicated core

○ Can be used in-kernel or from user space (/dev/rpmsgNN)
○ Can export a named endpoint from user space
○ Can provide a tty device (real or virtual) from

the remoteproc (/dev/ttyRPMSGNN)

8

(New since 2019)

In kernel users of RPMsg

drivers/bluetooth/btqcomsmd.c
drivers/media/platform/st/sti/delta/*
drivers/misc/fastrpc.c
drivers/net/wireless/ath/wcn36xx/*
drivers/net/wwan/rpmsg_wwan_ctrl.c
drivers/platform/chrome/cros_ec_rpmsg.c
drivers/soc/qcom/apr.c
drivers/soc/qcom/smd-rpm.c
drivers/soc/qcom/wcnss_ctrl.c
drivers/tty/rpmsg_tty.c
net/qrtr/smd.c
samples/rpmsg/rpmsg_client_sample.c
sound/soc/fsl/*

9

Why Upstream?

● OpenAMP technologies have existed for years but was always tied to vendor SDKs
○ Needed patches in vendor kernel
○ Only built as part of large vendor SDKs
○ No instructions to use it w/o vendor SDKs

● OpenAMP CI Builds
○ Use the latest kernel, old kernels, or even -rcN kernels
○ future: build & test patch series from remoteproc mail list
○ Build with Upstream Yocto/OE: minimal layers needed poky + meta-openamp

■ meta-arm is used today to get generic-arm64 machine def
■ has own meta-openamp-bsp to supply

generic-armv7a machine def
○ Build one OS image for arm64 and one for arm32 (v7a)

■ Boot firmware from board as SystemReady defines
■ Should work everywhere, but …

● Only have one arm32 platform tested today
● Only have one arm64 platform tested today

10

Why Zephyr?

● OpenAMP libraries are portable
○ support multiple RTOS, bare-metal, and even Linux user space

● For CI, demo, and reference we have to start somewhere
● So why Zephyr?

○ Complete, non-trivial system, with batteries included
○ Same clone, configure, build setup for all SOC vendors
○ Same build tools for all vendors

● OpenAMP CI Build
○ Provide OpenAMP demos & reference apps for use with Upstream Zephyr
○ Allow use of latest OpenAMP libraries as an option
○ Test experimental branches of Zephyr & OpenAMP libs
○ Future: Build and test library PRs as they come in
○ Future: Automate release testing as much as possible

11

A lot has been happening in the last 3 years

12

v5.3 to v6.1-rc6 (3+ years) v3.4 to v5.3 (7+ years)

kernel Remoteproc 442 patches 399 patches

kernel RPMsg 104 patches 174 patches

2019 to 2022 2014 to 2018

open-amp library 115 PRs 114 PRs

libmetal 95 PRs 69 PRs

OpenAMP library usage

13

● Multi-OS support
○ FreeRTOS
○ NuttX (integrated)
○ Linux (Userland)
○ Zephyr (integrated)
○ baremetal solutions

● Multi-architecture support:
○ ARM & ARCH64
○ CEVA
○ RISCV
○ X86 & X86_64
○ XTENSA
○ …

Library usage history based on GitHub stars:

The project has a good growth momentum extending to multiple OSes and silicon architectures
Adopt it and join OpenAMP Community!

Demos

STMicroelectronics demonstration:
Use of upstream Linux and Zephyr for
inter-processor communication

15

STM32MP157 platform introduction

16

● Hardware:
 The STM32MP157F SoC embeds:

○ Arm® Cortex®-A7 dual core
○ Arm® Cortex®-M4

● Software:
○ Cortex®-A7: ST OSS Yocto distribution based on upstream

repositories:
▪ Linux kernel 6.0
▪ Arm Trusted Firmware 2.7.0
▪ U-Boot 2022.10
▪ OP-TEE 3.19.0-rc1

○ Cortex®-M4: Zephyr 3.2 (integrating OpenAMP v2022.04) with
openamp system reference example

https://github.com/STMicroelectronics/meta-st-stm32mp-oss/tree/kirkstone
https://github.com/OpenAMP/openamp-system-reference/tree/main/examples/zephyr/rpmsg_multi_services

Demo 1: Preloading of a firmware by U-Boot and Linux
attachment for RPMsg communication

17

● The Zephyr Firmware is loaded and
started by the U-Boot before booting
Linux

● The Linux “attaches” to the coprocessor.
It configures the VirtIO to initiate the
RPMsg protocol

Demo 2 : upstreamed RPMsg services usage

18

OpenAMP on the
Xilinx ZynqMP heterogeneous platform

19

Xilinx ZynqMP Platform Introduction

20

● Xilinx Zynq® UltraScale+™ MPSoC contains
○ Quad-core Arm® Cortex®-A53
○ Dual-core Arm Cortex-R5F
○ Microblaze controller
○ and many other HW blocks
○ SOC TRM:

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm

● OpenAMP and Linux kernel remoteproc and rpmsg framework is used for
different operations and communication between Cortex-A core and
Cortex-R5F cores

● As of now Cortex-R5F cores Can be configured in two modes:
○ Lockstep Mode (Also known as Safe Mode)
○ Split Mode (Also known as performance mode)

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm

Xilinx ZynqMP Platform Introduction

21

● Lockstep Mode (Also known as Safe Mode)
○ Both RPU cores uses same set of

resources (IPI, TCM, etc…)
○ Both RPU cores execute the same code in

lock-step, clock-for-clock
○ The outputs from the lead RPU, core 0, are

checked by core 1
○ Discrepancies are flagged as a system

error

APU (Cortex-A53) Resources, IPI
TCM, reserved mem

ZynqMP lockstep Mode

RPU0 (Cortex-R5F)

RPU1 (Cortex-R5F)

Cortex-R5F cluster

Xilinx ZynqMP Platform Introduction

22

● Split Mode (Also known as performance mode)
○ Each RPU core operates independently
○ Each RPU core has its own caches and

TCMs

APU (Cortex-A53)

RPU0 (Cortex-R5F)
Resources, IPI
TCM, reserved
mem

ZynqMP split Mode

RPU1 (Cortex-R5F)
Resources, IPI
TCM, reserved
mem

Hypervisor-less virtio
Intra-SoC connectivity and device sharing

Intelligent Edge / Partitioned systems

24

Complex SoCs - flexible integration
platforms:

● Many levels of safety, real-time,
and manageability

● Decoupled multi-vendor
software development

● Improved lifecycle management
● Increased testability

Multi-core SoC

Real-Time Safety Hypervisor

Industry-Specific Frameworks Support — i.e., ARINC 653, OPAF, ADAR,
FACETM …

RTOS 1
ASIL VM RTOS 2 Linux Android

Safety OS

Core 1 Core 2 Safety CPU 0

Safety
Application

Real-Time
Application AI Workloads Application Safe RT

Processing

Core 3-5 Core 6-8

Safety Island

VIRTIO for intra-SoC workload integration

25

● Open-source standard
● Enables decoupling the software from the hardware and

supports modular system integration
● Solves the fragmentation problems caused by hypervisor

specific interfaces and device drivers implementations
● Allows the creation of software defined architectures
● Increases efficiency
● Enables code reuse

Hypervisor-less VIRTIO

26

Define and prototype a framework for using VIRTIO as a communication
infrastructure, while removing the constraints usually associated with the
presence of a hypervisor.

● Intel and ARM support
● MMIO transport over shared memory
● Unsupervised AMP support
● Hardware notifications
● Static configuration (features, queues)
● Linux KVM tool used as a Physical Machine Monitor
● VIRTIO device support: console, 9P virtual file system,

vsock, virtio-net.

VIRTIO

Hypervisor-less VIRTIO

27

Auxiliary
Runtime

PMM

Primary Runtime
General-Purpose

Cores and Devices

Partitioning via core reservation, core offload, virtualization, or compute
islands

Real-time / Safety
cores and devices

Application
POSIX

Independent Life Cycle Dependent
upon Partitioning Technique

General
Purpose VMs,

Containers, and
Processes

PMM File Access, Console,

IPC, Networking

28

kvmtool / lkvm on Linux as
Virtual Machine Monitor (VMM)

Guest

virtio devices

Device
configuration

Feature
bits

Device
status

virtqueues

virtio drivers*
buffers Auxiliary Runtime

kvmtool / lkvm on Linux as
Physical Machine Monitor (PMM)

virtio drivers*

virtio devices

Device
configuration

Feature
bits

Device
status

Shared memory
region definition

Shared memory
region

virtqueues buffers

Hypervisor (KVM)

* File system (9P), Console (serial), Network (virtual ethernet), IPC (vsock)

STANDARD VIRTIO HYPERVISOR-LESS VIRTIO

Front-End

Back-End

Bus (PCI, MMIO, Channel I/O)

Shared Memory Layout

29

OpenAMP App Services WG

VIRTIO in lib OpenAMP

● VIRTIO MMIO front-end support: network, console, entropy
● Hypervisor-less mode for network and entropy
● Zephyr reference using OpenAMP library for virtio device

support (OA System Reference)
○ qemu_cortex_a53 for pure virtio
○ qemu_cortex_r5 for hypervisor-less virtio

● PMM derived from kvmtool (OA System Reference):
virtio net, console, entropy, 9P FS, virtual sockets

Shared Memory Layout

30

Demo 4: Hypervisor-less VIRTIO

Community

OpenAMP system reference

Ze
ph

yr

S
hi

m

Cortex-A53 Cortex-R5

virtio-mmio
Pre-shared

memory

VIRTIO
drivers

virtio-rng virtio-net

User space

Kernel

UIO

vhost-vsock
(optional)

vhost-net
(optional)

IPI mailbox
controller

User MBOX

Physical Machine Monitor

/dev/net/tun

OpenAMP includes the building blocks for assembling multi-OS systems
using standards-based protocols with rich connectivity and device

sharing capabilities.

31

System Devicetrees
Lopper Demo

System Devicetree

One true source for all HW resources in a SoC
○ Specification of available resources
○ Allocation of resources into domains

33

Lopper

Open source framework to manipulate devicetrees
○ Prune System devicetree into domain-specific devicetrees
○ Easy to configure to convert, filter and modify devicetrees

■ lops: data driven rules using DT or YAML format
■ assists: Python code to do more complex transformations

34

Xen

Linux

RTOSLopperSystem DT

OpenAMP Demo

A53
Core 3

A53
Core 2

System DT - Specification

A53
Core 1

MicroBlaze

mmc0

serial

ethernet

can0

serial1

memory

A53
Core 0

S-DT specification
• HW description before any allocations
• CPU clusters, devices and memory
• Addresses, topologies, …

S-DT
Specification

36

R5
Core 1

R5
Core 0

A53
Core 3

A53
Core 2

System DT - Allocation

A53
Core 1

MicroBlaze

mmc0

serial

ethernet

can0

serial1

memory

A53
Core 0

S-DT specification
• HW description before any allocations
• CPU clusters, devices and memory
• Addresses, topologies, …

memory

Shared
memory

Domain
memory

S-DT
Specification

37

R5
Core 1

R5
Core 0

openamp_a53_0_cluster openamp_r5_0_cluster

R5
Cores

ethernet serial
A53

Core 0-3

memory memory

S-DT Domain Allocation

Domain allocation from SW Architect (YAML)
• What HW goes where
• Domains: HW allocated to OS/FW/HV

Protected
memory

Legend

A53
Core 3

A53
Core 2

System DT - Lopper

A53
Core 1

MicroBlaze

mmc0

serial

ethernet

can0

serial1

memory

A53
Core 0

S-DT specification
• HW description before any allocations
• CPU clusters, devices and memory
• Addresses, topologies, …

Lopper

S-DT
Specification

38

R5
Core 1

R5
Core 0

Linux devicetree
(Traditional)

Bare Metal Config

openamp_a53_0_cluster openamp_r5_0_cluster

R5
Cores

ethernet serial
A53

Core 0-3

memory memory

S-DT Domain Allocation

Domain allocation from SW Architect (YAML)
• What HW goes where
• Domains: HW allocated to OS/FW/HV

memory

Shared
memory

Domain
memory

Protected
memory

Legend

OpenAMP Demo

● Self contained docker image to try out
○ See end of webinar for instructions

● Simple yaml file with two domains
○ openamp-overlay-zynqmp.yaml
○ Defines shared virtIO memory for OpenAMP

● Lopper commands that generates output for each domain
○ Traditional devicetree for Linux
○ Config information used by bare metal build system

Change in yaml file flows into all domains

39

Xen Devicetree Demo

A53
Core 3

A53
Core 2

System DT – Complex Example

subsystem1 subsystem2

xen

linux1

bm1

freertos1

bm2

A53
Core 3

R5
Cores

MicroBlaze

mmc0

serial0

ethernet0

can0

serial1

memory

A53
Core 0-2

memory

memory

memory

memory

memory

A53
Core 1

MicroBlaze

mmc0

serial0

ethernet0

can0

serial1

memory

A53
Core 0

S-DT specification
• HW description before any allocations
• CPU clusters, devices and memory
• Addresses, topologies, …

Domain allocation from SW Architect (YAML)
• What HW goes where
• Subsystems: HW with same lifecycle
• Domains: HW allocated to OS/FW/HV
• Firewalls: Protection between domains

Lopper

Firewall

S-DT
Specification

S-DT Domain Allocation

41

R5
Core 1

R5
Core 0

Xen devicetrees &
configuration

Linux devicetree
(Traditional)

Bare Metal config

memory

Shared
memory

Domain
memory

Protected
memory

Legend

Xen Demo

● Xen is an embedded hypervisor
○ The virtual machines (VMs) / guests are called domains
○ Primary use case is to isolate domains from each other

● Devicetrees are used for Xen itself as well as for each domain
○ Creating devicetrees for guest has been done manually
○ Very error prone due to splitting of clocks, etc.

● Lopper automates the creation of Xen devicetrees
○ Takes care of rewriting necessary nodes

Configuring a hypervisor is similar to AMP
42

Wrap-up

43

What is Next? 1/2

44

● Remoteproc & RPMsg
○ Get ZynqMP Remoteproc truly upstream
○ Support of multi VirtIO devices declared in the devicetree
○ RPMsg flow control and other control channel services
○ possible: Coprocessor firmware authentication upstream

● Other VirtIO devices
○ Finish the normal and hvl-virtIO services in the OpenAMP library

■ Get into main of open-amp, libmetal, and Zephyr
■ Build all Linux components OE/Yocto, include in CI
■ port to other platforms

○ possible: virtio backends on the remoteproc
○ possible: In kernel support for remoteproc based virtio

eg: vsock

https://lore.kernel.org/linux-remoteproc/CAL_JsqLY8BBVXoCE6C2dGooBtKxY8XrBk9Sc_D2ksJAQHgcCxA@mail.gmail.com/T/#m24e2aacdce662bdbb2590dc79ffc53debe6b381f
https://lore.kernel.org/lkml/20220921135044.917140-3-arnaud.pouliquen@foss.st.com/T/
https://lore.kernel.org/linux-remoteproc/20220919201501.GD759648@p14s/T/#t
https://wiki.st.com/stm32mpu/wiki/How_to_protect_the_coprocessor_firmware
https://github.com/OpenAMP/open-amp/issues/390

What is Next? 2/2

45

● System devicetree (S-DT)
○ Further Yocto integration
○ Zephyr integration
○ Productize S-DT usage in Xen
○ Added Lopper functionality including DT comparison and verification

● CI
○ Build and test open-amp & libmetal PRs on QEMU & HW
○ Build and test patch series from remoteproc on QEMU & HW
○ Better test coverage

● Documentation:
○ Good start already source (new as of 2022-10)
○ Clean-up and synchronize with 2023.04 release
○ Actual wire protocol specification,

independent of kernel or open-amp
○ New resource table proposal
○ Control channel proposal

https://openamp.readthedocs.io/en/latest/
https://github.com/OpenAMP/openamp-docs

Key messages

46

OpenAMP Upstream
Remoteproc and RPMsg are working today from upstream.

Use it for your application or add support for your platform today

Hypervisorless Virtio
Virtio is a powerful standard.

This work enables you to leverage that
standard for AMP systems

System Devicetree
With one single source, you are able to configure
multiple runtimes: Linux, RTOS, Xen and more

Trying it on your own

Try it on your own

48

● We have a docker container with everything you need to run in QEMU
○ docker run -it openamp/demo-lite
○ All the details are on the document page

● If you would rather try it manually
○ CI-Build README
○ Zephyr Openamp-system-reference readme
○ HVL-Virtio readme
○ SystemDT demo readme

● Have questions about running the demos AFTER the webinar?
○ Join our OpenAMP community discord
○ Once your in, join the #openamp-community channel

● Have other questions?
○ Join our mailing lists, see openampproject.org

https://openamp.readthedocs.io/en/latest/demos/docker_images.html
https://github.com/OpenAMP/openamp-ci-builds/blob/main/README.md
https://github.com/OpenAMP/openamp-docs/blob/main/demos/system_reference-ST.rst
https://github.com/danmilea/hypervisorless_virtio_zcu102/blob/main/README.md
https://github.com/devicetree-org/lopper/blob/systemdt-linaro-demo/demos/openamp/README.md
https://discord.gg/8quFQBWq42
https://www.openampproject.org/

Wrap-up

49

Q&A

Bill Mills,
Linaro

Arnaud Pouliquen,
STMicroelectronics

Tanmay Shah,
AMD Xilinx

Dan Milea,
Wind River

Tomas Evensen,
AMD Xilinx

Bruce Ashfield,
AMD Xilinx

Tammy Leino,
Siemens

Mathieu Poirier,
Linaro

Video editing: Nathalie Chan King Choy, AMD Xilinx

Thank You

OpenAMP: “Open Asymmetric Multi-Processing” Project

51

Runtime coexistence and collaboration
Runtime hardware resource assignment

Resource sharing and IPC between runtimes
Control mechanisms to start and stop runtimes

Typical system: Linux + RTOS on one system-on-chip

www.openampproject.org.

http://www.openampproject.org

