
White Paper | Protecting Investment in Code Optimisation with Toolchain CI 1

W H I T E P A P E R

Linaro Toolchain Team June 2022

Abstract

Modern compilers usually do an excellent job of
producing a good baseline level of performance. In
important cases this may not be enough and the skilled
developer learns the optimisation techniques that the
compiler uses and can work in partnership with it to
achieve the highest performance for a particular high
throughput or low latency application. The resulting code
also comes with a maintenance burden. Optimisations
which worked hand-in-hand with the previous compiler
version may immediately come unstuck when a new
version of the same compiler is released. This happens
because compiler developers do not have a clear picture
of how their development affects all scenarios or
architectures.

This white paper from the Linaro Toolchain Team
examines the problem space and the Toolchain CI
project. This project carries out automated performance
regression testing with the evolving compiler and
can immediately flag any regressions to the compiler
development community. In this way, performance
regressions impacting optimised code caused by new
compiler versions can be caught and fixed much more
quickly than if they enter an official compiler release. As a
result, organisations responsible for optimised codebases
can see significantly reduced risk of performance
regression when moving to new compiler versions.

Contents

Code Optimisation - an Uneasy Partnership 	 2
with the Compiler	

Sidebar: The Continuing Importance of 	 2
Optimisation 	

New Compiler - New Performance Regression?	 3
	 Overview	 3

	 Maintaining Code Performance Across Arm and x86	 3

	 The Challenge of Specific Use cases or Configurations	 4	

	 Organisations Shipping Their Own Compilers	 4

Keeping on Top of Compiled Code Performance	 4

Linaro’s long-standing involvement in 	 5
Open Source toolchains 	

Introducing Linaro’s Toolchain CI	 6
	 Project Context and Goals	 6

	 Toolchain CI to the Rescue! A Case Study of	 7

	 the CI in use

	 Value Generated by Toolchain CI Participation	 8	

	 References	 8

How to find out more and participate	 9

About Linaro	 9

Protecting Investment in Code Optimisation
with Toolchain CI

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 2

Code Optimisation - an
Uneasy Partnership with
the Compiler

Software performance is ever more important in our
world from the data centre all the way to portable
devices. Portable devices are becoming smaller and
have to do more with less battery capacity. Software
performance and efficiency become increasingly more
important in our lives. There’s no programming language
that can make code run fast, but programming languages
can give the programmer a tremendous amount of
control and unleash potentially powerful compiler
optimization technology [1].

The compiler becomes an active partner in the
optimisation process and the developer should take a
good compiler and help it to do a great job of optimising
the code. There are many optimization techniques that
compilers can use, ranging from simple transformations,
such as constant folding, to extreme transformations,
such as instruction scheduling [2].

The UK’s Super Computing Service - HECTOR, and in
its Good Practice Guide [3] describes two main avenues
which can be followed when trying to optimise an
application:

•	 Optimisations that DO NOT involve modifying the
source code (modification may not be desirable):
optimisation consists of searching for the best
compiler, set of flags and libraries.

•	 Optimisations that DO involve modifying the
source code: in the first instance the programmer
must evaluate if a new algorithm is necessary,
followed by writing or rewriting optimised code ...
If this is not possible the programmer should write
the code using techniques that help the compiler to
generate a fast executable.

Both cases emphasise the importance of partnership
with the compiler. However, there are two thorny issues
lurking in this partnership, especially for long-lived

codebases. Firstly, compilers are actively developed
projects evolving to support new processors, being
tuned to better address new use cases, and being
supported to fix bugs. Secondly, compiler project
teams are completely unable to exhaustively test all
the optimisation cases that could be thrown at them,
and although the open source compiler projects do an
excellent job, regressions do escape and make it into
official compiler releases.

The standard practice for testing and benchmarking
performance-critical applications is to use compiler and
toolchain releases on a bi-annual or annual cadence. It
makes short-term efficient use of developers’ time, but
it leaves little opportunity for addressing performance
problems which sneak into new compiler releases. All
major open-source compiler communities allow changes
to release branches that fix code correctness issues,
but they do not risk de-stabilizing release branches with
fixes for code-performance problems. Organisations
developing code that achieves a hard-won level of
performance improvement, almost always through
partnership between developer and the compiler,
have seen some or all of a particular performance
improvement evaporate when they move to a newer
version of the compiler.

If performance or code size optimisations to a codebase
are a significant part of an organisation’s engineering
investment, then there are real and demonstrable risks
and implications of compiler performance regression.

The Continuing Importance of Optimisation

Wirth’s Law (also called Page’s Law) states “software is
getting slower more rapidly than hardware is becoming
faster.”. This was originally coined by Niklaus Wirth but has
been re-affirmed by Larry Page and Sergey Brin of Google
[4]. There have been a few variants on the statement that
directly tied it to the historic regular increases in hardware
performance described in Moore’s Law. The general
consensus is that Moore’s Law is now over, at least in
anything like its original form [5]. The implication is that
the need for code optimisation, which never went away
under Moore’s Law, is stronger than ever.

si
de

ba
r

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 3

it in a release, it can take a long time to get it fixed and
recover the lost performance.

The organisation risks facing a difficult choice of staying
on an old compiler and distro for longer, with customers
complaining about slow pace of updates, or alternatively
accepting the performance hit of moving to the new
version.

Maintaining Code Performance Across Arm
and x86

The recent emergence of Arm as an architecture in the
server and desktop space, manifested by the Amazon
Graviton and the Apple M1, has meant that application
code and compiler optimisations need to be maintained
across both Arm and x86. This is a new and more
complex commercial environment and developers are
struggling to keep track of work across architectures.
There are recent cases of X86 compiler changes having
a detrimental effect on Arm code performance, and
as stated above, this can only become apparent in an

New Compiler - New
Performance Regression?

Overview

Where hard-fought performance or other efficiency
improvements have been implemented in a codebase
it’s important to look at what circumstances trigger
the potential risk to this investment. Typically a new
compiler version is likely to be mandated when moving
to a new distro version. Functional improvements,
meeting commercial or technical standards, the need
for security updates and general availability of support
drives the cycle of updates to new compiler/distros. It
can be a struggle to manage the work involved because
of potential regressions in performance or other
efficiency issues.

At the same time, the organisation’s engineering teams
often aren’t able or don’t have time to follow changes
to the open source compilers that might affect them in
the future. Regressions in performance due to compiler
changes can come as an unpleasant surprise. Even
worse, if an organisation reports a regression in the
toolchain to the compiler team when they encounter

GNU and LLVM Regression Count

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 4

or the more specialist the configuration, the less likely
that it will be represented in testing by the compiler
community and its performance is therefore vulnerable
to upstream changes to the toolchain.

Organisations Shipping Their Own Compilers

High Performance Compute (HPC) is a market where
a commercial compiler offer is often carefully tuned
to give best performance results on HPC workloads
on high performance hardware clusters. Maintaining a
compiler is a major and costly undertaking and it’s likely
that the development team may have to focus on a
small set of workloads. Performance testing is a major
overhead and without significant automation it can be
difficult to track performance regressions vs previous
versions of the compiler product. In addition, frequent
and extensive testing is necessary to get a good picture
of the in-house compiler product performance versus
the latest state of open source compiler evolution.

A performance benefit should be the primary reason
to develop and maintain a proprietary compiler, but
without regularly measuring the performance delta
there’s no obvious way to differentiate and justify
commercial sales.

official release when it’s too late to back out the change
to the compiler.

Many organisations now have an incomplete picture of
compiler behaviour based only on x86 from the days
when the Arm architecture was mainly deployed for
embedded and mobile, but working across architectures
is now mainstream, rather than a niche activity.
Making an application developed on x86 run on Arm
architectures is, mostly, a one-time effort. Making
an application developed on x86 run fast on Arm
architectures is a continuous effort – due to developers
still, overwhelmingly, using x86 machines for write-
test-debug process. This makes continuous integration,
testing and benchmarking a must-have requirement for
cross-architecture software projects.

The Challenge of Specific Use cases or
Configurations

Many engineering businesses benefit from deep
knowledge and service of a market niche. Extensive
application knowledge in one area is a key differentiator
versus new entrants. This specialisation can mean
working on very specific workloads for demanding
customers. Unfortunately, the more narrow the use case

Keeping on Top
of Compiled Code
Performance

As shown above, investment made in achieving high
performance for an in-house codebase or an external
project on internal hardware is potentially at risk from
changes as open source compilers evolve. Because
of this, organisations can accumulate technical debt
with respect to falling performance without realising,
and at the point that they move the latest compiler,
an unanticipated support burden to fix code for newer
compilers can appear.

To address this, a process is needed to de-risk movement
to a new toolchain version - typically driven from a
move to a new distro. In the new cross architecture
world, the process needs specific management to handle
the more fluid case of Arm tools and optimisations vs
the incumbent x86. It needs to be able to look across
performance benchmarks for both x86 and Aarch64 =>
Add Aarch64 benchmarks. It also needs to be able to track
a specific configuration or edge case.

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 5

t 	 gcc-linaro-4.6-2011.10 on Arm

t 	 gcc 4.7
t 	 using gcc auto-vectorizer

t 	 Engineering build of gcc 4.8

t 	 eglibc & glibc
t 	 gcc 4.9
t 	 Member and product driven
	 gcc optimisations

t 	 GCC toolchain transition to Arm

2010	 t 	 Linaro founded

2011	 t 	 Linaro toolchain project processes defined
	
2012	

2013	

2014	 t 	 NEON testing
	

2015	 t 	 Ongoing quarterly toolchain releases
	 t 	 Advanced toolchain usage tutorials
	 t 	 Benchmarking best practice
	 t 	 Performance improvements
	 t 	 GDB and LLDB roadmap
	
2016	 t 	 Undefined Behavior and Compiler Optimizations	
	
2017	 t 	 ILP32 and FDPIC
	 t 	 SVE

2018	 t 	 Coremark regression approaches
	 t 	 String optimization in glibc

2019	 t 	 Code size improvement work

2020	

2021	 t 	 Windows on Arm native 	
		 development

t 	 LLVM community releases
	 and roadmap

t 	 Introducing LLVM

t 	 LLVM Internals

t 	 LLVM and GDB contributions

t 	 Reducing LLVM code size on
	 32-bit Arm targets

LLVMGCCYear Company milestones

•	 Stand a better chance of pushing back on adverse
compiler changes instead of re-doing optimisations

•	 Access to results of relevant (niche) benchmarks

And additionally for any organisation developing in-
house commercial compiler products, it can be highly
valuable to be able to access an infrastructure/process for
continuous testing that gives hard numbers to enable a
comparison with open source as a baseline.

The value from such a process would include providing
insurance for investment in code optimisations and a
more timely movement to new toolchains or distros.

Key aspects of such a process with respect to the GCC
and LLVM open source compilers should be:

•	 To allow a timely dialogue with the ecosystem if
changes are affecting in-house performance

•	 Get a better understanding of the dynamics involved
in compiler changes that can affect the organisation

Linaro’s long-standing involvement in Open Source toolchains

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 6

Introducing Linaro’s
Toolchain CI

Project Context and Goals

Toolchain benchmarking and analysis is a key element
of the work that Linaro carries out on open source tools
for the Arm architecture. It’s part of overall toolchain
quality and CI efforts and it includes detection of
code-speed regressions, code-size regressions and also
detection of build/boot breakages. These quality and
CI efforts are part of Linaro’s open source toolchain
community citizenship. They ensure the quality of
open source toolchains, bring value across all areas
of the Arm Ecosystem and also secure our members’
investment in Linaro’s own toolchain development
work for architecture enablement and Arm architecture
optimisation.

In summary the project goals are:

•	 Secure Linaro members’ investment in toolchain
optimisation

•	 Contribute to the overall sustainability of the open
source toolchain community

•	 Bring value to the Arm architecture ecosystem

In order to achieve these project goals, Linaro has
worked with our members and with the toolchain
community and built a state-of-the-art benchmarking
CI which can identify benchmark slow downs and code
size increases, automatically identifies regressions down
to highlighting a single toolchain commit and is able to
track and benchmark many different configurations of
upstream toolchains.

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 7

Toolchain CI to the Rescue! A Case Study of
the CI in use

This is a short case study taken from many examples
where an actual regression case was caught by the
Toolchain CI after a patch was submitted to the
compiler. In this case an optimisation for another
architecture (x86) adversely affected the performance of
Arm compiled code.

Timeline of a performance regression:

22nd September 2021 - Linaro Toolchain CI detects a
6% slowdown in SPEC CPU2006 benchmarks for LLVM

caused by a patch submitted by an x86 developer who
was not familiar with the Arm ISA. After bisecting, the CI
was able to provide the developer with the last good run
(parent commit) and first bad run (failing commit).

23rd September 2021 - Linaro gives some advice to
the x86 developer on how the change affected the Arm
implementation.

24th September 2021 - the commit is reverted and
performance is restored.

Note that the issue was highlighted by toolchain CI and
resolved by the community between 22nd and 24th
September.

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 8

References

[1] Understanding Compiler Optimization - Chandler Carruth Opening Keynote Meeting C++ 2015

[2] https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/february/compilers-what-every-programmer-should-know-

about-compiler-optimizations

[3] http://www.hector.ac.uk/cse/documentation/SerialOpt/

[4] Wikipedia - Wirth’s Law

[5] We’re Not Prepared for the End of Moore’s Law https://www.technologyreview.com/2020/02/24/905789/were-not-

prepared-for-the-end-of-moores-law/

It’s unfortunately very easy to lose 6% of performance
due to a problematic change and very hard to later
find 6% performance improvement due to careful (re-)
optimisation. If CI had not been available to catch this
problem, and the issue appeared in an official release of
the compiler, it would have taken many months just to
back out the problematic commit.

Note that this is not an uncommon situation and
developers working on a particular architecture
can’t be expected to know the deep details of other
architectures or configurations. It’s up to stakeholders to
be vigilant. Other regressions caught by Toolchain CI for
specific benchmarks within the same week (27th Sept -
4th October 2021) were:

•	 Linaro’s Toolchain Working group 470.lbm grew in
size by 38% after gcc: aarch64:
Improve size ...

•	 Linaro’s Toolchain Working group 400.perlbench
slowed down by 6% after llvm:
[SimplifyCFG] Ignore ...

•	 Linaro’s Toolchain Working group 471.omnetpp
slowed down by 8% after gcc:
Avoid invalid loop ...

•	 Linaro’s Toolchain Working group 462.libquantum
grew in size by 3% after llvm:
[JumpThreading] …

Value Generated by Toolchain CI Participation

Any organisation which depends on, or has itself
invested in toolchain optimisations can immediately
gain value from participating in Toolchain CI in order
to become best-in-class for up-to-date tools and
increase business confidence to continue to invest
in optimisations. Specifically, businesses who are
now moving to support Arm as well as x86 can be
more confident in protecting their investment in code
optimisations to be performant on the Arm architecture.

As well as end customers and users benefitting from
the latest tools, in-house engineers become much
more able to collaborate and share information across
architectures and configurations. Through the ability
to automatically detect specific problem commits,
engineers can maintain a connection to the upstream
project community and can feel more in control of
events instead of just reacting to the impact of each
official release.

Ultimately CI participation makes an organisation
better able to target engineering resources where
they are needed, and this is particularly beneficial to
organisations who also ship proprietary toolchains in
such performance-sensitive verticals as HPC.

https://www.youtube.com/watch?v=FnGCDLhaxKU&ab_channel=MeetingCpp
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/february/compilers-what-every-programmer-should-know-about-compiler-optimizations
https://docs.microsoft.com/en-us/archive/msdn-magazine/2015/february/compilers-what-every-programmer-should-know-about-compiler-optimizations
http://www.hector.ac.uk/cse/documentation/SerialOpt/
https://en.wikipedia.org/wiki/Wirth%27s_law
https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/
https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law/

White Paper | Protecting Investment in Code Optimisation with Toolchain CI 9

About Linaro

Linaro leads collaboration in the Arm ecosystem and helps
companies work with the latest open-source technology.
The company has over 250 engineers working on more
than 70 open-source projects, developing and optimizing
software and tools, ensuring smooth product roll outs,
and reducing maintenance costs.

Work happens across a wide range of technologies
including artificial intelligence, automotive, datacenter
& cloud, edge & fog computing, high performance
computing, IoT & embedded and mobile. Linaro is
distribution neutral: it wants to provide the best
software foundations to everyone by working upstream,
and to reduce costly and unnecessary fragmentation.
The effectiveness of the Linaro approach has been
demonstrated by Linaro consistently being listed as one
of the top ten company contributors, worldwide, to Linux
kernels since 3.10.

To ensure commercial quality software, Linaro’s work
includes comprehensive test and validation on member
hardware platforms. The full scope of Linaro engineering
work is open to all online. To find out more, please visit

www.linaro.org and www.96Boards.org

How to find out more
and participate	
You can see examples of the testing output at
Benchmarking CI regressions. Take a look at the
benchmarks and contact us with any specific
questions about the testing and results. For more
information on the project contact us on toolchain-
ci@linaro.org

There are multiple ways to participate in the project.
Various tiers of membership are open to those
interested in directly influencing the direction of the
project to ensure it delivers the solutions they need.
By becoming a member, your engineers get to work
with Linaro’s team of experts and other industry
leaders on scoping and steering the solution. If you
are keen to find out more about the Linaro Toolchain
Team, you are welcome to visit the team page at
linaro.org

http://www.linaro.org
http://www.96Boards.org
https://linaro.atlassian.net/issues/?filter=10214
mailto:toolchain-ci@linaro.org
mailto:toolchain-ci@linaro.org
https://www.linaro.org/core-technologies/toolchain/
https://www.linaro.org/core-technologies/toolchain/

